

Which process is useful for optical amplifier?

How can we make stimulated emission dominant over absorption? Pump carriers into $\rm N_2$ so that $\rm N_2 > \rm N_1$

Optical Pumping and Electrical Pumping are possible

Optical Pumping: Consider Er

Pump light is absorbed at E_3 carriers at E_3 are rapidly transferred to E_2 (N₂ builds up)

If N₂>N₁ (population inversion), stimulated emission > absorption for 1550nm light

➔ Er can be easily added to core of Silica fiber: EDF (Er-doped Fiber)

	1/IA														1	8/VIIIA		
1	1 H 1.008	2/11A	-	R	eľ	i 0		Ge	13	b	e		13/ША	14/IVA	15/VA	16/VIA 1	7/VIIA	2 He 4.003
2	3 Li 6.941	4 Be 9.012	1998 Dr. Michael Blaber										5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.30	◄ VIII → 3/IIIB 4/IVB 5/VB 6/VIB 7/VIIB 8 9 10 11/IB 12/IIB										13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.05	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 SC 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
6	55 Cs 123.9	56 Ba 137.3	La- Lu	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 OS 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 210.0	85 At 210.0	86 Rn 222,0
7	87 Fr 223.0	88 Ra 226.0	Ac- Lr	104 Db	105 JI	106 Rf	¹⁰⁷ Bh	¹⁰⁸ Hn	109 Mt	110 Uun	111 Uuu							
	← s		4				— d		← <i>p</i> ►									
Lanthanides				57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.2	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	61 Tm 1.8.9	70 Yb 173.0	71 Lu 175.0
Actinides				89 Ac 227.0	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np 237.0	94 Pu 239.1	95 Am 241.1	96 Cm 244.1	97 Bk 249.1	98 Cf 252.1	99 Es 252.1	100 Fm 257.1	101 Md 258.1	102 No 259.1	103 Lr 262.1

- f -

EDFA: Er-doped Fiber Amplifier

Compensates fiber loss: Long distance optical fiber communication

Optoelectronics (06/2)

Gain saturation due to limited carrier numbers at E₂

Optoelectronics (06/2)

Other materials where optical pumping is possible: Optical gain materials

- Crystals doped with impurities: Ruby doped with Cr (Al₂O₃:Cr³⁺)
- Gases: Ar, N, mixture of He and Ne
- Semiconductors

